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Single-particle rotational bands and the inverse bound-state 
problem 

B Buck?, J A Spierst and A C Merchant$§ 
t Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 
$ Department of Nuclear Physics, Keble Road, Oxford OX1 3RH, UK 

Received 13 October 1988 

Abstract. The empirical observation that the single-particle energies generated by solving the 
Schrodinger equation for a deep, bell-shaped potential form almost perfect rotational bands 
is examined within a semiclassical approximation. Formulae are deduced to reconstruct 
the potential V ( r )  which gives rise to a bound-state energy spectrum of the form E ( v , l )  = 
f(av + 1.) + pi2  where a and p are arbitrary constants, v - 4 = n is the number of internal 
nodes in the radial wavefunction and i- = I is the angular momentum quantum number. 
We further find that the unspecified function f is, in fact, determined by a and p. A 
discussion is given of the conditions governing the possibility of making the inversion to 
obtain V ( r ) .  

1. Introduction and background 

In the course of calculations on a simple c ( + l 6 0  model for states of 20Ne it was 
discovered [l] that cr-l60 potential shapes generated by folding the nuclear densities 
for varying distances between the centres of mass, i.e. 

gave rise to Schrodinger equation bound-state and resonance energies with a nearly 
perfect rotational spacing. Specifically, it was shown [l] that the five levels with a fixed 
value of N = 2n + 1 = 8, where 1 is the angular momentum and n is the number of 
nodes in the radial wavefunction for 0 < r < CO, i.e. the levels with (n , l )  = (4,0), (3,2), 
(2,4), (1,6) and (0,8), lie on a straight line when plotted against 1(1+ l) ,  and similarly for 
the five levels with 1 = 1,3,5,7 and 9 belonging to N = 2n + 1 = 9. The above potential 
was generated by numerical folding of densities, but it was seen that its general shape 
was like that of a Gaussian potential (see figure 1); so it was felt to be of interest 
to investigate this phenomenon further using various analytic potentials with shapes 
similar to those given by folding procedures. 

In the following we use units such that 2m = h = 1. Bound single-particle spectra 
calculated from the Schrodinger equation for the potentials 

V ( r )  = -400 sech2(r) 
V ( r )  = -400 exp(-r2) 

$ Permanent address: Instituto de Estudos Avanpados, Centro TCcnico Aeroespacial, 12.225 SHo Josk dos 
Campos, SLo Paulo, Brazil. 
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Figure 1. A comparison of three potentials for the l60 + U system to emphasise the similarity 
of their shapes. The full curve represents the numerically evaluated folded potential of 
equation (1.1). The dotted curve is the Gaussian function VG(r) = -176exp(-r2/7.5). 
The chain curve is a second parametrisation proposed by Buck and Pilt [2], Vc(r)  = 
-Vo(l +cosh(&/ao))/[cosh(r/ao) +cosh(&/ao)], where VO = 176 MeV, & = 2.25 fm and 
a0 = 0.8 fm. 

are shown in figures 2 and 3. Again we have plotted all levels with a fixed value of 
N = 2n + I against I(1+ l), and we start with N = 2 as being the first real rotational 
band, since there is only one level each for the ‘bands’ with N = 0 and N = 1. It 
is rather startling to observe that for both potentials all the bound states fall into 
these nearly perfect rotational patterns, and indeed, the energy positions of the sharp 
resonance states in the continuum region also lie on such straight lines. It is even more 
surprising that the slopes of the bands for these potentials are all closely similar, i.e. 
the effective rotational moments of inertia are only weakly dependent on the band 
quantum number N = 2n + 1. 

A closer look at the numbers shows some slight departures from straight line fits, 
but fitting the best straight line to each band indicates that the level schemes for both 
potentials are represented very well (within fractions of a percent) by formulae of the 
type 

E(n, 1) = A ( N )  + B ( N ) [ I ( I +  111 (1.4) 

with N = 2n + 1. 

quantity A ( N )  is given accurately by the expression 
For the hyperbolic potential of type (1.2), but with arbitrary strength V ,  the 

A, (N)  = -[(V + y 2  - (N + 91’ (1.5) 

which is the exact result from the Schrodinger equation for the I = 0 levels (with N 
even), but also gives correct values when the N-odd bands are linearly extrapolated to 
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Figure 2. A plot of the energies of the bound states 
of the hyperbolic potential, VH(r) = -400 sech*(r), 
of equation (1.2) as a function of I ( [ +  1) for all levels 
with a fixed value of N = 2 n + l .  Note how the states 
with the same value of N = 2n + I lie on almost 
perfect rotationally spaced bands. 

Figure 3. A plot of the energies of the bound states 
of the Gaussian potential, VG(r) = -400exp(-r2), of 
equation (1.3) as a function of l (1  + 1) for all levels 
with a fixed value of N = 2n+l. Note how the states 
with the same value of N = 2n + 1 lie on almost 
perfect rotationally spaced bands. 

1 = 0. The coefficient BH(N) coming from potential (2)  has a weak linear dependence 
on N ,  i.e. 

BH ( N )  N 0.332 - 0.005N (1.6) 

at least up to N = 6. 
For the Gaussian potential equation (1.3), there does not seem to be any simple 

formula for AG(N) ,  but there is an even weaker linear dependence of the B coefficient 
on N ,  i.e. 

BG(N)  N 0.252 + 0.002N (1.7) 

as far as N = 10 in this case. For N > 10, there are deviations of B ( N )  from linearity 
in N for both potentials, but these higher levels still have almost perfect rotational 
spacings within the bands of fixed N .  Other potentials with the same sort of smoothly 
changing shapes as illustrated in figure 1 also give rotational spectra similar to the 
results described above, but in general A ( N )  does not have any simple representation. 

It is the purpose of this paper to make a first attempt at explaining this behaviour. 
In particular, we note that many such potential shapes imply B coefficients of the form 

B ( N )  = P + y N  with y 4fi (1.8) 

over an appreciable range of N .  
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2. The inverse problem 

Consideration of these results led us to ask how potentials yielding spectra of the form 
given in equation (1.4) might be characterised. To simplify matters, we investigate what 
can be said about potentials implying spectra with band quantum numbers N = 2n + 1 
and with a constant rotational parameter B ( N )  = p, i.e. with spectra given by 

E(n,  I )  = A(rn + I )  + pI(1f 1) (2 .1)  

where A(an + 1) is an undetermined function. Our previous cases correspond to ci = 2 
and p N for the hyperbolic potential and p ?: a for the Gaussian. The modification 
of the global quantum number to N = an + I enables us to include other interesting 
examples of band structure or degeneracy and some exactly soluble cases. 

Some relevant work on this problem has been done by Rowley [3], using semi- 
classical methods (Bohr-Sommerfeld quantisation). He showed that the levels within 
a band of fixed (2n + I )  increase or decrease in energy with 1 depending on whether 
the potential lies above or below the oscillator potential which yields the same turning 
points in the Bohr-Sommerfeld integral. However, he was not able to say when a 
potential would give the striking rotational spacings proportional to I(1+ 1) within a 
band. 

It turns out to be convenient in our work also to formulate the problem in terms 
of the Bohr-Sommerfeld quantisation formula (with the usual Langer replacement of 
1(I+ 1) by ( I  + i)2 in the local momentum expression). The energy eigenvalues are then 
given by the equation (see figure 4) 

where we have assumed potentials such that there are two real turning points rl  and r2 
where the integrand vanishes. The interval between rl and r2 is the classically allowed 
region. The energy values E(n ,  1) for integral n and I are of course only approximations 
to the correct Schrodinger equation eigenvalues, but for the smooth potentials of 
interest they are remarkably accurate. In fact, for the Gaussian potential of equation 
(1.3) the Bohr-Sommerfeld energies are all uniformly less than the exact energies by 
0.3 units. These Bohr-Sommerfeld values have been computed by Stephenson [4] and 
he has given a table comparing these numbers with our exact Schrodinger equation 
eigenvalues. Hence, it is clear that using the Bohr-Sommerfeld integral (2.2) will not 
affect our conclusions about the spectra in this case and probably not much in similar 
cases. 

The natural variables in equation (2.2) are 

So, rewriting our formulae in terms of v and 2, we want to investigate the properties 
of the potentials V ( r ) ,  which, when inserted in the integral equation 

l : [ E ( v , A )  - V ( r )  -,12/r2]'/2dr = rcv 
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Figure 4. A plot of the effective potential F ( A , r )  = V ( r )  + A/r*  as a function of the 
distance r .  The minimum energy Emin, a low energy associated with small v (chain line) 
and the classical turning points associated with the energies E and E' are highlighted. 

yield a spectrum of the form 

E ( v , A )  = f ( a v  + 2) + pn2 (2.5) 

where f ( a v  + A) is an undetermined function, differing numerically from A(an + 1) by 
the constant p/4. 

There are several advantages to using this semiclassical formulation. 
(i) Energy spectra are almost the same as for an exact quantum mechanical 

calculation. 
(ii) Only the part of the potential lying below a given E(v,A) ,  and between the 

turning points, is relevant for determining E ( v , L ) ,  so we do not need to worry about 
the tail behaviour of the potential (or wavefunction). 

(iii) We can treat v and as continuously varying parameters so as to derive exact 
differential equations for the potential. 

(iv) The equations we shall derive may also be extracted directly (though approx- 
imately) from the Schrodinger equation, as shown in appendix 1. Hence we have the 
choice of exact equations from an approximate theory, or approximate equations from 
an exact theory. We have chosen the first alternative. 

The result we shall demonstrate is, at  first sight, extremely surprising. That is, if 
there exists a potential V ( r )  which gives a spectrum of the form of equation (2.5), then 
it is uniquely determined by the constants a and p, up to an arbitrary depth parameter 
and an arbitrary additive constant. It is not necessary to specify the function f a priori 
since it also is determined by the values of a and p. The basic reason for this result is 
that whatever V ( r )  is assumed, consistent with two real turning points of the integrand 
in equation (2.4), the spectrum E ( v ,  A) must obey two consistency conditions which 
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are independent of V. In other words, E(v ,A)  cannot be an arbitrary two-variable 
function and our assumption of a spectrum consisting of some function of a linear 
combination of v and A plus a specified dependence on A is sufficient to determine f 
and V almost completely. For the particular spectrum of equation (2.5), much simpler 
methods suffice and the consistency requirement reduces to a (non-linear) differential 
equation for f ,  from which we are able to derive the appropriate potential V ( r )  in 
closed form. The complicated consistency conditions are given in appendix 2, but we 
shall not use these results in the rest of the paper. In general, we conjecture that they 
imply that E ( v ,  A) need only be known along any line in the ( v ,  A) plane (in particular 
along the lines (0,A) or (v,O)) for it to be determined everywhere up to the top of the 
barrier. 

3. Derivation of basic equation 

For the moment we set aside the assumed spectrum equation (2.5) and derive some 
simple equations from the Bohr-Sommerfeld formula, which we now write in the form 

l , r z ( E ( v , % )  -F(A,r))'"dr = nv  (3.1) 

where 

We assume a potential such that the situation is as illustrated in figure 4. Bohr- 
Sommerfeld quantisation involves integrating the square root of the quantity E ( v ,  A) - 
F(A, r ) ,  indicated by the double arrow in figure 4, between the points where this quantity 
vanishes. 

Consider now what happens if we set v = 0 in equation (3.1). It is clear from 
figure 4 that the turning points must coincide at rl  = r2 = R, say, and that at this 
point the integrand must vanish. The line corresponding to E(0,A)  then just touches 
the minimum of the function F(A , r )  which occurs also at r = R. Hence we deduce that 

E ( O , A )  = F(A,R) = v ( R ) + A ~ / R ~  (3.3) 

and that 

from which it follows that 

R3 dV(R) 
2 dR 

A2 = _- (3.5) 

so that R is an implicit function of A. 
To illustrate the remarks at the end of 0 2 we now show that in many cases it 

follows from equations (3.3) and (3.4) that V is determined by a knowledge of the 
spectrum along the line v = 0, i.e. from E(0,A)  only. Since V is determined, then 
substituting it back in equation (3.1) gives E ( v ,  A) everywhere. 



Single-particle rotational bands 3483 

Suppose we know E(0,L)  = &(A), so that 

&(I.) = V ( R )  + R2/R2 = F(R ,  R).  

Differentiating totally with respect to A we easily find 

But, from equation (3.4), a F ( A ,  R ) /dR  = 0 and hence 

Solving for A we find A = %(R) and on substituting 

1.z (R)  
V ( R )  = &(%(R))  - - 

R2 

which partially determines the potential V ,  since 

(3.8) 

back in equation (3.6) we obtain 

(3.9) 

changing % implies changing R so 
that we obtain V ( R )  for a range of values of R from a knowledge of &(A). 

Exactly soluble examples of this are the assumptions &(A) = E(0,A) = A or - l / A 2  
from which we quickly find the potentials V ( r )  = r2/4 and -2/r respectively which 
yield the corresponding exact total spectra E(v ,A)  = 2v + 1, or -l/(v + A ) 2 .  These 
cases are of course just the harmonic oscillator and the hydrogen atom respectively 
for which the Bohr-Sommerfeld integral can be evaluated analytically, giving results 
agreeing exactly with quantum mechanics. 

In our problem the equations (3.3)-(3.5) are not sufficient by themselves to determine 
V ( r )  since from the assumption of equation (3.5) we find only 

E(0,  A) = &(A) = f ( A )  + pn2 (3.10) 

which still contains the unknown function f . Thus we require another equation relating 
the spectrum to the potential. Fortunately, the required relation can be derived from 
the Bohr-Sommerfeld integral almost as easily as the preceding equations. We can 
explore the functions F (A, r )  in the neighbourhood of the minimum point at r = R by 
considering the Bohr-Sommerfeld integral for v increased from 0 to AV where AV is 
small enough that we can write, to sufficient approximation, 

(3v=o* E(Av, A) N E(0,A)  + AV (3.11) 

This is represented by the chain line in figure 4 which cuts the curve F ( A , r )  near its 
minimum. Expanding this function in a Taylor series about r = R and using equation 
(3.4) we find, to second order, that 

Substituting equations (3.11) and (3.12) into (3.1) and using (3.3) gives 

(3.12) 
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where the turning points are given by 

This integral is elementary, AV drops out, and equation (3.13) reduces to 

(3.14) 

(3.15) 

It is an interesting fact that, given the spectrum (2.5), the non-linear equations (3.2)- 
(3.4) and (3.15) can be solved exactly for the potential V .  Before demonstrating this we 
collect the equations and write them in a more convenient form. Hence if the minimum 
of F ( I ,  r )  = i 2 / r 2  + V ( r )  occurs at r = R we have 

E(0 ,A)  = A2/R2 + V(R) (3.16) 

and, from the condition (BF(%,  r ) / 8 r ) r = R  = 0 we get 

which defines the function G(R). Also, we easily find that 

6,i2 d2V(R) 3 dV(R) d2V(R) +- dR2 
- 1 d ,dV 1 dG 

R3 dR (. dR) = ZdR’ - -- 

and therefore 

(3.17) 

(3.18) 

Finally, it is straightforward to eliminate R and V(R) from equations (3.16)-(3.18) so 
as to derive an equation involving E ( v , I )  only (i.e. a consistency condition on the 
spectrum for any V ) .  This assumes its simplest form if we define A = d2, in which case 
E ( v ,  %) must satisfy the relation 

(3.19) 

4. Determination of the potential 

We now apply equations (3.16)-(3.18) to the spectrum assumed in equation (2.5). This 
latter equation gives 

E(O, i )  = f ( A )  + PE.’ (4.1) 
df (4 

v =o 
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Substituting equation (4.1) in (3.16) and differentiating totally with respect to A we 
obtain 

Also, from equations (3.18) and (4.2) we have 

df(2) 2 dG 1'2 . dn 

Eliminating df (%)/div yields 

2 dG ' I 2  
2 U i "  - - p  = -- (d2 ) ( R 3 d R )  

i.e, 

(4.3) 

(4.4) 

But, from equation (3.17), 2i2 = G, so that equation (4.5) reduces to the ordinary 
differential equation 

2 1 
= a2R3 ( Rz - p )  1 dG 

G dR 
_ _  

which may be integrated immediately to give 

G(R) = ARuZ exp[-a2p(R2 - pR4/4)]. (4.7) 

Also from equation (3.17) G(R) = R3dV(R)/dR; hence 

Integrating this formally, we have finally that 

V ( r )  = A exp[-a2p(R2 - BR4/4)]dR + B s' (4.9) 

where A and B are arbitrary constants. In addition, the form of the function f in 
equation (2.5) is determined by substituting ( a E / a ~ ) , , ~  and (aE/aA) ,= ,  into equation 
(3.19) but the resulting non-linear equation cannot in general be integrated in closed 
form. In spite of this, we can easily see that in the case that a = 2, p = b ,  corresponding 
to the empirical Gaussian results shown earlier, the integrand in equation (4.9) reduces 
to Rexp[-R2+R4/16]. For R appreciably less than 2 the term R4/16 may be neglected, 
so that equation (4.9) implies that the required potential is Gaussian over part of its 
range. This is at least a partial justification of the striking properties of the Gaussian 
which were obtained numerically. The eventual effect of the R4/16 term is to ensure 
that V continues to increase without limit; but this is of course required since we 
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have assumed that the spectrum f(av + i.) + PIv* holds everywhere and that there is no 
continuum. 

There are also some interesting special cases for which the integration can be 
performed analytically. If the coefficient = 0, so that E(0,A) = f(jv), we can obtain 
analytic predictions for the approximate (semiclassical) bound-state spectra of simple 
power-law and logarithmic potentials. 

For the power-law spectra, we return to equation (4.9) and set p = 0, with x # 0 
or 2. Integration then clearly yields 

Are2-* 
V ( r )  = - + B.  a * - 2  

(4.10) 

For convenience let us set A = s = x* - 2 and B = 0 so that we are considering the 
spectrum associated with the potential V ( r )  = r s .  The simplest way to obtain the 
energy levels is to locate the minimum of F ( r )  = EL2/r2 + rs at r = R, so that 

(4.1 1) 

and then obtain E ( 0 , i )  by substitution into equation (3.16). 
E(O,lL) = f (i”), we can write E (v, A) = f (av + 2) for power-law potentials in the form 

Having thus found 

(4.12) 2s/(s+2) i, + v-) s # -2,o. 
2 

The two excluded cases s = -2,O (or equivalently x 2  = 0 , 2 )  correspond to the 
situation where E does not depend on v and to a logarithmic potential, respectively. If 
we set P = 0, a* = 2 in equation (4.9) we readily find 

V ( r )  = Alnr  + B.  (4.13) 

Again, we set A = 1, B = 0 for convenience. We then locate the minimum of F(%, r )  at 
R = &I, and find energy spectra associated with the logarithmic potential of the form 

From the approximations inherent in our derivation it is clear that the energies predicted 
by equations (4.12) and (4.14) are expected to be most accurate for states of small v 
and large i. 

Thus we have proved, from the Bohr-Sommerfeld integral, that a spectrum of the 
form given in equation (2 .5)  can only be produced by the explicit potential of equation 
(4.9) and also that the unspecified function f is in fact determined by the constants 
a and P.  However, this surprising result needs further discussion since it is easily 
misinterpreted. That a careful statement is needed is brought out by the observation, 
from numerical evaluation of the Bohr-Sommerfeld formula, that the potential of 
equation (4.9) does not, in general, exactly reproduce the spectrum given in equation 
(2 .5) .  How can this be? The reason is that in general there is no potential which yields 
the specified spectrum and that such a formula can at best be only an approximate 
representation of an actual spectrum. 
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To see this, we first of all note that any spectrum generated by the Bohr-Sommerfeld 
expression must satisfy the consistency condition (3.19), and this suffices, for the 
particular spectrum (2.5), to derive the form o f f .  But, as mentioned earlier, a Bohr- 
Sommerfeld spectrum must satisfy two consistency conditions (see appendix 2), and 
this may well rule out completely a spectrum of some a priori specified form (e.g. that 
of equation (2.5)). 

An alternative statement of our result is as follows. Suppose that, instead of 
equation (2.5), we specified that the spectrum had the form 

with g ( v ,  A) having the properties 
E ( v ,  1.) = f (av + A )  + pn2 + g ( v ,  A )  (4.15) 

(4.16) 

With these restrictions at v = 0 on g(v ,  A) and its first derivative, our previous analysis 
will go through exactly as before, since g will make no contribution to lowest order. We 
shall thus obtain exactly the same result for f ( a v  + I v ) ,  In this limit we are insensitive to 
g(v,E,). It is actually possible, since we have two consistency conditions, to determine 
the forms of both f ( a v  + 3,) and g(v,A) uniquely in terms of a and /? in an exactly 
analogous manner. 

Our earlier considerations involving only f ( a v  + A) were so successful in closely 
reproducing the numerical spectra because we were essentially always working in the 
small-v limit, and so g ( v , % )  generally made only a small contribution to the energy. It 
is this contribution which is responsible for the small deviations of the spectra from 
perfect rotational spacing. We are justified in ignoring g(v ,  3.) because we are effectively 
fixing 3. and exploring the region of small v associated with that value of 1. in our 
search for an expression for the energy. For this reason our approximations are at their 
best when v is close to zero, and steadily deteriorate as v increases. We emphasise, 
however, that a spectrum of the form given by equation (4.15), with the restrictions of 
(4.16), holding for all values of v and A, can only arise from a potential of the form of 
equation (4.9). 

5. Summary 

We have considered the question of what type of potential V ( r )  can generate bound- 
state energy spectra of the form E(v ,  %) = f ( a v  + A) + pi? where a and p are arbitrary 
constants, v - = n is the number of internal nodes in the radial wavefunction and 
1. - 5 = 1 is the angular momentum quantum number. We have worked within the 
semiclassical approximation and deduced an expression for V ( r ) ,  which is given in 
equation (4.9). This potential can even be evaluated analytically in simple cases (as 
when p = 0). 

The form of the unknown function f is entirely determined by the constants a 
and p, and this function must satisfy two consistency conditions (see appendix 2). I n  
general, a spectrum of the simple fo rm spec@ed cannot be exactly realised in practice. It 
can, however, be very closely approximated with the formulae we have derived, which 
gives them some practical utility. 

The most general form of spectrum determined by a and p would be E(v ,A)  = 
f(av+A)+pA*+g(v, A), with the restrictions of equation (4.16) on the unknown function 
g. Further work is needed to determine g ( v , i , )  and to understand its smallness in all 
the cases we have considered. 
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Appendix 1 

In this appendix we derive the basic equations of 9 3 directly from the Schrodinger 
equation. We suppose that we have a spectrum, specified by a set of parameters, and 
seek to deduce the potential U which produces the given spectrum as a function of 
those parameters. 

We consider the radial Schrodinger equation for a state bound in a local, attractive 
potential V ( r )  = U ( r )  - 1/(4r2) such that there are only two classical turning points. 
For convenience we set I? = 2m = 1 and write 

(Al . l )  

where E is the energy, A = I +  
restrictions on V ( r )  imply that the effective potential F ( A , r ) ,  defined by 

and x is the radial wavefunction (multiplied by r ) .  Our 

1.z 
F (2, r )  = V ( r )  + - 

r* 
(A1.2) 

has a single, local minimum at some point r = R. Bearing this in mind and differenti- 
ating with respect to r ,  we get (exactly as before in equation (3.5)) 

21? dV(R) 
R3 dR ' 

_ -  - (A1.3) 

Clearly, the lowest value that the energy can assume is F ( 2 ,  R). Let us suppose that 
the energy depends on the two continuous parameters v and 1b (defined in equation 
(2.3)) so that E = E ( v , A ) .  Now, let us associate v = 0 with the lowest value of the 
energy. Hence, we define 

E(0,A) = F ( % ,  R). (A1.4) 

For small values of ( r  - R) we can make a Taylor expansion of F (%, r )  about the point 
r = R keeping A fxed. Similarly, for small values of v we can make an analogous 
expansion of the energy about v = 0. To lowest order (cf equations (3.11) and (3.12)) 
this gives 

(A1.5) 
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and 

(A1.6) 

If we now substitute equations (A1.5) and (A1.6) into equation ( A l . l )  we obtain 

d2x ( r - R ) ’  -+- dr2 2 r=R v =o 
(A1.7) 

This is the equation of a one-dimensional simple harmonic oscillator with characteristic 
frequency U given by 

The well known expressions for the energy eigenvalues then enable us to write 

(A1.8) 

(A1.9) 

Since we defined v in equation (2.3) to be n + 5,  this obviously leads to an expression 
identical to that of equation (3.15): 

(A1.lO) 

The rest of the analysis of $9 3 and 4 now follows identically. However, we should point 
out that we have actually derived these relations for a potential V ( r )  = U ( r )  - 1/(4r2), 
which is therefore a little different from the potential, U ( r ) ,  which we would really like 
to have treated. 

Appendix 2 

In this appendix we consider the constraints on a potential which supports a sequence 
of bound states whose energies are known up to some value E and determined by the 
two quantum numbers v and 1, defined in equation (2.3) (see figure 4). For convenience 
we shall write A = A2 hereafter. We shall derive four equations which must be obeyed 
by the classical turning points r ,  and r2 associated with the given energy E ( v , A )  and 
the effective potential F ( A , r )  = V ( r )  + A / r 2 .  This amounts to two of the equations 
determining r l  and r2 while the two remaining equations act as consistency conditions 
(as outlined in # 3 and 4). 

Let us begin by considering the situation sketched in figure 4 for afixed value of 
A. We shall apply the Bohr-Sommerfeld quantisation rule using the energy E ,  labelled 
by the quantum numbers v and A. This energy E is assumed to be greater than the 
minimum energy, Emin, which occurs when v = 0. We .thus define the minimum energy 
by 



3490 B Buck, J A Spiers and A C Merchant 

or equivalently 

Emin = E(0,A).  

The appropriate Bohr-Sommerfeld quantisation rule is 

(A2.2) 

(A2.3) 

Let us now form 

E’ - F(A, r )  dr (A2.4) 
E v(E’,A) 

where we have made use of equation (A2.3). In this expression ri and r; are functions 
of E’ and A. We now change the order of integration in equation (A2.4) 

dE’. (A2.5) 
E v(E’,A) 

The energy integral on the right-hand side may now be evaluated to yield 

We now integrate the left-hand side by parts to find that 

(A2.6) 

(A2.7) 

As the energy increases from E,,, to E ,  the nodal quantum number increases from 0 
to v, so we may rewrite this last equation in the form 

(A2.8) 

We now obtain our first two equations for the turning points r l  and r2 by differentiating 
equation (A2.8) with respect to E and A :  

dv’ 1 
= ,(r2 - L” J E  - E (v ‘ ,  A) 

and 

(A2.9) 

(A2.10) 

These last two equations for the classical turning points are identical to those 
derived from the well known Rydberg-Klein-Rees method (see, for example, p 351 of 
[ 5 ] ) .  In arriving at them, we have made use of the E (energy) dependence of v while 
holding the angular momentum constant. We may also obtain two other equations 
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for the classical turning points in an analogous manner by considering the A (squared 
angular momentum) dependence of v while holding the energy constant. 

We define the maximum angular momentum by 

v(E,Amax) = 0 (A2.11) 

or equivalently 

Amax = A(O7 E). (A2.12) 

Once again we shall make use of the Bohr-Sommerfeld quantisation rule of equation 
(A2.3). This time let us form 

(A2.13) 

Changing the order of integration in equation (A2.13) as before we obtain 

dA’. (A2.14) v(E, A’) dAl = 1 J; dr iAmax JE - F (Ai,  r )  
71 d m  

The angular momentum integral on the right-hand side may now be evaluated to yield 
r2 v(E’A’) dA’ = l, [E - F(A,r)] r dr. (A2.15) 

We now integrate the left-hand side by parts to find that 

As the squared angular momentum increases from A to A,,,, the nodal quantum 
number decreases from v to 0, so we may rewrite this last equation in the form 

A(v’, E )  - A dv’ = - (E - V ( r )  - A/r2) r dr. (A2.17) 

We now obtain two more equations for the turning points r l  and rz by differentiating 
equation (A2.17) with respect to A and E :  

2Lv : J-: 
dv’ =?I.(:) 1 L” dA(v’, E) - A 

and 
’’ dA(v’, E) dv‘ 1 

= - ( r i  - r ; ) .  L dE J A ( v ‘ , E ) - A  4 

(A2.18) 

(A2.19) 

These last two equations were first deduced by Miller [6]. We may now choose 
any pair from equations (A2.9), (A2.10), (A2.18) and (A2.19) to determine rl and r2 ,  
leaving the remaining two equations as consistency conditions. 
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